
Система СРХ-Е

FESTO

Festo AG & Co. KG

Ruiter Straße 82 73734 Esslingen Германия +49 711 347-0 www.festo.com

Инструкция по применению Оригинальное руководство по эксплуатации 8070967 2017-07 [8070973]

Система СРХ-Е..... Русский

Об этом документе

В настоящем документе описано применение указанного выше семейства изделий. Определенные аспекты применения описаны в других документах и должны учитываться → 1.1 Параллельно действующая документация.

1.1 Параллельно действующая документация

Документ	Содержание
Описание системы CPX-E (CPX-E-SYS)	Подробное описание системы СРХ-Е
Документация на компоненты системы СРХ-Е и подключаемые к ней периферийные устройства	Информация по применению компонентов
Специальная документация АТЕХ	Информация по применению изделия во
	взрывоопасных газовых средах
Файлы описания устройств	Определение модулей системы СРХ-Е для
	включения в вышестоящую систему
	управления
Документация на вышестоящую систему	Информация по вводу в эксплуатацию и
управления и других абонентов сети	параметризации компонентов

Fig. 1

Вся имеющаяся документация по продуктам → www.festo.com/pk

1.2 Версия изделия

Настоящий документ относится к системе, состоящей из модулей СРХ-Е. Версию изделия можно определить при помощи его маркировки или по соответствующему программному обеспечению Festo.

Соответствующее программное обеспечение (ПО) для определения версии изделия доступно на портале поддержки (Support Portal) компании Festo → www.festo.com/sp. Информация по применению ПО включена в интегрированную функцию помощи пользователю.

1.3 Маркировка изделия

Модули CPX-E имеют маркировку на боковой поверхности с левой стороны. Маркировка изделия описана в сопроводительной документации к изделию.

1.4 Указанные стандарты

Состояние издания		
DIN 46228-1:1992-08	EN 60529:2013-10	
DIN 46228-4:1990-09	EN 60715:2001-09	
EN 60068-2-27:2010-02	IEC 60204-1:2014-10	

Fig. 2

2 Безопасность

2.1 Общие указания по безопасности

- Соблюдайте установленные законом регламенты, действующие в отношении соответствующей области применения.
- Применяйте изделие только в рамках заданных значений
 - → 15 Технические характеристики.
- Обращайте внимание на маркировку изделия.
- Соблюдайте требования параллельно действующей документации
 1.1 Параллельно действующая документация.
- Храните изделие в прохладном, сухом месте, с защитой от УФ-излучения и коррозии. Обеспечьте короткий срок хранения.
- Перед проведением работ на изделии: выключите электропитание и заблокируйте от повторного включения.
- Соблюдайте предписания по обращению с элементами, которые подвержены риску воздействия зарядов статического электричества.

2.2 Использование по назначению

Описаное в данном документе семейство изделий предназначено только для использования в рамках защищенной области вокруг станка или автоматизированной системы.

Изделия должны использоваться только следующим образом:

- Использование только в сфере промышленности. За исключением случаев применения в промышленной среде, например, в районах со смешанной застройкой (из жилых и производственных зданий), при необходимости должны быть приняты меры по устранению радиопомех.
- Использование только в сочетании с модулями и компонентами, разрешенными для соответствующего варианта изделия
 - → www.festo.com/catalogue.
- Используйте изделие только в технически безупречном состоянии.
- Используйте изделие только в оригинальном состоянии без внесения каких-либо самовольных изменений. Допускаются только те изменения или модификации, которые описаны в данной документации и параллельно действующих документах.

2.3 Квалификация специалистов

Монтаж, ввод в эксплуатацию, техническое обслуживание и демонтаж должны производится только квалифицированными специалистами.

Это должны быть специалисты, которые хорошо знакомы с правилами подключения электрических систем управления.

3 Дополнительная информация

- Принадлежности → www.festo.com/catalogue
- Запасные части → www.festo.com/spareparts

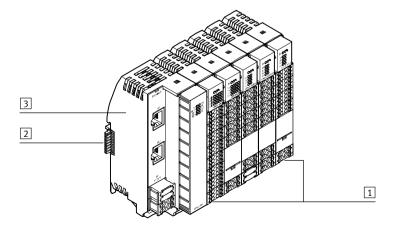
4 Сервис

 По техническим вопросам обращайтесь к региональному представителю компании Festo → www.festo.com.

5 Обзор продукции

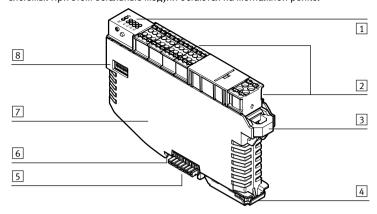
5.1 Функции

Система СРХ-Е - это система с модульной конструкцией для подсоединения электрических периферийных устройств. Например, отдельные модули в системе СРХ-Е служат для получения сигналов датчиков и управления исполнительными механизмами. С помощью шинного модуля или блока управления система СРХ-Е может быть через сеть подключена к вышестоящей системе управления или работать автономно. Для диагностики имеются различные интерфейсы и функции.


5.2 Состав изделия

Система СРХ-Е

Система СРХ-Е состоит из одного шинного модуля или одного блока управления с левой стороны и как минимум одного модуля I/O для обработки сигналов. Связь между модулями реализуется с помощью стыкующих элементов. Контакты обоих наружных стыкующих элементов защищены концевыми держателями.


К одному шинному модулю или одному блоку управления прилагаются по 2 концевых держателя.

- Модули входа и выхода
- 2 Соединительный элемент
- Шинный модуль (здесь CPX-E-PN)

Модули СРХ-Е

Модули CPX-E сконструированы таким образом, что замена отдельных компонентов возможна без демонтажа системы CPX-E. Для того чтобы извлечь модуль, нужно разъединить фиксаторы. После этого модуль можно извлечь из системы. При этом остальные модули остаются на монтажной рейке.

6

Соединительный элемент

Контакт функционального

заземления FE

DIL-переключатели $^{1)}$

Корпус

- Элементы светодиодной индикации
- 2 Клеммные колодки
- 3 Фиксатор клеммных колодок
- Фиксатор клеммных колодо
 Фиксатор модуля
- 1) Зависят от типа модуля

Fig. 4

5.3 Элементы индикации

Модули СРХ-Е имеют светодиодные индикаторы, зависящие от конкретных параметров модуля, сети и системы:

- Светодиодные индикаторы для конкретного модуля и конкретной сети описаны в документации к соответствующему модулю.
- Обзор светодиодных индикаторов для конкретной системы представлен в следующей таблице → Fig. 5.
- Характеристики светодиодных индикаторов для конкретной системы приведены в "Описании системы СРХ"
 - (→ 1.1 Параллельно действующая документация) и ниже
 - → 11 Диагностика и устранение неполадок.

Светод	иод	Пояснение	
**	PS (зеленый)	Power System	Контроль подачи рабочего напряжения U _{EL/SEN}
***	PL (зеленый)	Power Load	Контроль подачи напряжения нагрузки U _{OUT}
***	SF (красный)	System Failure	Системная ошибка ¹⁾
※	М (желтый)	Modify	Режим запуска (Force mode) активен, или включен запуск системы с сохраненной параметризацией и структурой системы.

1) Индикация 3 классов ошибок с помощью различных видов подачи сигнала.

Fig. 5

Подробную информацию о классах ошибок см. в "Описании системы CPX" \Rightarrow 1.1 Параллельно действующая документация.

5.4 Элементы управления

Модуль СРХ имеет фиксаторы для закрепления и разъединения модуля, клеммных колодок и подсоединенных проводов.

- 1 Фиксатор пружинной клеммы
- Фиксатор клеммных колодок
- Э Фиксатор модуля

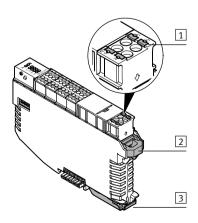
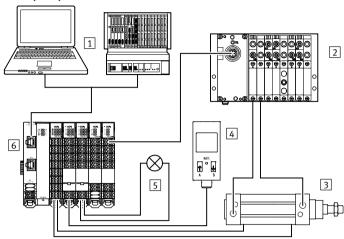


Fig. 6

5.5 Присоединительные элементы


Присоединение системы СРХ-Е

Отдельные модули системы СРХ-Е соединяются друг с другом с помощью соединительного элемента. Контакт устанавливается при монтаже модулей на монтажную рейку → 7 Монтаж. Когда модуль снимается, связь с другими модулями прерывается.

Подсоединение периферийных устройств

Для подсоединения периферийных устройств модули имеют клеммные колодки с пружинными клеммами → 8 Подключение.

6 Пример

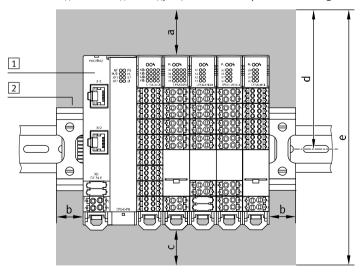
- 1 Вышестоящая система управления
- 2 Пневмоостров VTUG
- З Стандартный цилиндр с датчиками положения для опроса позиций
- 4 Датчик расхода
- 5 Световой индикатор
- 6 Система СРХ-Е с шинным модулем и модулями I/O

Fig. 7

7 Монтаж

7.1 Установка на монтажную рейку

Установка модулей осуществляется на монтажной рейке $35 \times 7,5$ мм по стандарту EN 60715.



При выборе винтов для монтажа на рейке необходимо обращать внимание на расстояние между монтажной рейкой и соединительными элементами, равное 3 мм.

Расстояние между крепежными винтами монтажной рейки должно составлять максимум 50 мм.

7.2 Монтажные интервалы

Чтобы обеспечить достаточную вентиляцию модулей, при монтаже системы CPX-E необходимо соблюдать следующие монтажные расстояния → Fig. 8.

- 1 Система СРХ-Е
- 2 Концевой держатель

Размеры [мм]: a = 40b = 20

c = 30

d = 106

e = 195

Fig. 8

7.3 Установка соединительных элементов

Монтаж соединительных элементов на монтажную рейку

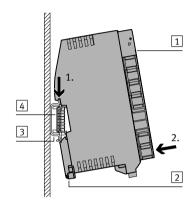

- 1. Установите соединительный элемент в правильном положении на монтажную рейку.
- 2. Закрепите соединительный элемент зажимом на монтажной
- 3. Сдвигайте соединительные элементы вместе до тех пор, пока они не защелкнутся друг в друге.
- Соединительный элемент
- 2 Монтажная рейка

Fig. 9

Установка и фиксация модуля

- 1. Установите модуль с помощью соединительного(-ых) элемента(-ов)1) на монтажную рейку.
- 2. Прижимайте модуль к монтажной рейке до тех пор, пока не защелкнется фиксатор модуля.
- Модуль
- Фиксатор модуля
- 2 3 Монтажная рейка
 - Соединительный элемент

1

Для шинных модулей требуются 2 соединительных элемента. Для систем управления требуются 4 соединительных элемента.

Fig. 10

Разъединение и снятие установленного модуля

- 1. Разъедините фиксатор модуля (например, с помощью шлицевой отвертки).
- 2. Откиньте модуль вверх и снимите его с монтажной рейки.
- Модуль
- Шлицевая отвертка
- Фиксатор модуля
- Монтажная рейка
- Соединительный элемент

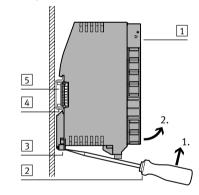


Fig. 11

Подключение

Примечание

Неполадки в работе, вызванные воздействием электромагнитного излучения.

- Присоедините экран на разъеме для функционального заземления FE.
- Соедините монтажную рейку низкоомным проводом с потенциалом земли.

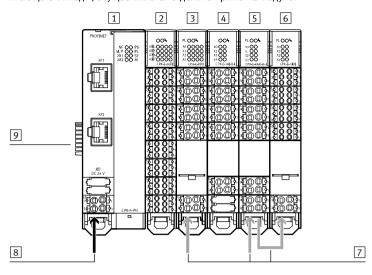
8.1 Схема электропитания

Система СРХ-Е использует разные напряжения для питания электронных устройств и датчиков ($U_{EL/SEN}$) и для питания выходов (U_{OUT}). Одинаковые потенциалы напряжений (+24 В пост. тока и 0 В пост. тока) соединены друг с другом в клеммных колодках. Таким образом, соответствующее напряжение может быть передано от одного модуля к другому.

Предупреждение

Опасность получения травм из-за непроизвольных перемещений подсоединенных исполнительных механизмов.

Через функцию обратной связи электропитание датчиков и/или исполнительных механизмов может поступать на СРХ-Е и привести к несанкционированным срабатываниям.


• Оставляйте свободной зону перемещения подсоединенных исполнительных механизмов.

Подача рабочего напряжения U_{EL/SEN}

Подача рабочего напряжения U_{EL/SEN} для питания электронного оборудования и датчиков происходит на шинном модуле или на блоке управления и распределяется внутри по цепочке на всю систему СРХ-Е.

Подача напряжения нагрузки U_{OUT}

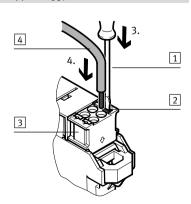
Подача напряжения нагрузки U_{OLIT} для питания выходов каждого модуля, имеющего выходы, осуществляется отдельно прямо на модуле.

- Шинный модуль CPX-E-PN Модуль входов CPX-E-16DI
- 3 Модуль входов CPX-E-8DO Модуль входов CPX-E-4AI-U-I
- Модуль выходов CPX-E-4AO-U-I
- IO-Link Мастер CPX-E-4IOL
- Подача напряжения нагрузки Unut
- Подача рабочего напряжения U_{EL/SEN}
- Соединительный модуль

Fig. 12

Подача рабочего напряжения $U_{\text{EL/SEN}}$ и подача напряжения нагрузки U_{OUT} внутри системы CPX-E осуществляются отдельно друг от друга. Если такое разделение не требуется для конкретного случая применения, оба вида напряжения могут поступать и от одного общего источника. В этом случае должно быть обеспечено отдельное отключение подачи напряжения нагрузки.

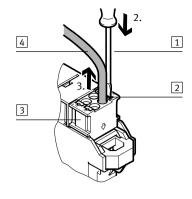
8.2 Подсоединение проводов


Предупреждение

Электрическое напряжение

Получение травм из-за удара электротоком, повреждения оборудования

- Для электропитания используйте только цепи защитного сверхнизкого напряжения (PELV) согласно IEC 60204-1/EN 60204-1 (Protective Extra-Low Voltage, PELV)
- Соблюдайте общие требования IEC 60204-1/EN 60204-1 к электрическим цепям защитного сверхнизкого напряжения (PELV).
- Используйте только такие источники напряжения, которые обеспечивают надежную электроизоляцию сети согласно IEC 60204-1/EN 60204-1.
- Должны подсоединяться все электрические цепи для подачи рабочего напряжения U_{EL/SEN} и напряжения нагрузки U_{OUT}.
- 1. Обеспечьте отсутствие напряжения в модуле и электропроводке.
- 2. Удалите изоляцию с конца провода и при необходимости обожмите конец провода.
- 3. Отожмите фиксатор пружинной клеммы (например, с помощью шлицевой отвертки).
- 4. Вставьте конец провода до упора в клеммную колодку.
- 5. Зажмите фиксатор пружинной клеммы.
- Шлицевая отвертка
- Фиксатор пружинной клеммы
- Клеммная колодка
- 4 Провод


Fig. 13

8.3 Отсоединение проводов

- 1. Обеспечые отсутствие напряжения в модуле и электропроводке.
- 2. Отожмите фиксатор пружинной клеммы (например, с помощью шлицевой отвертки).
- 3. Вытяните провод из клеммной колодки.
- Шлицевая отвертка
- 2 Фиксатор пружинной клеммы
- Клеммная колодка
- Провод

Fig. 14

Ввод в эксплуатацию

Характеристики системы СРХ-Е при вводе в эксплуатацию в значительной степени определяются параметризацией шинного модуля.

Обращайте внимание на информацию о параметризации в описании шинного модуля → 1.1 Параллельно действующая документация.

Предупреждение

Опасность получения травм из-за непроизвольных перемещений подсоединенных исполнительных механизмов.

Система СРХ-Е запускается даже при неполной параметризации.

- Оставляйте свободной зону перемещения подсоединенных исполнительных механизмов.
- Проверяйте параметризацию и назначение адресов входов или выходов (например, с помощью режима Force mode).

Во избежание ошибок подсоединения и адресации требуется поэтапное выполнение операций ввода в эксплуатацию.

- 1. Проверьте выполнение монтажа и электрические соединения → 9.1.
- 2. Выполните настройки на шинном модуле или на блоке управления 🗲 9.2.
- 3. Проведите функциональный тест (без вышестоящей системы управления)
- 4. Выполните ввод в эксплуатацию на сети (свышестоящей системой управления) → 9.4.
- 5. Проведите параметризацию 🛨 9.5.

Э Примечание

Ошибки адресации из-за изменения адресных областей в процессе эксплуатации.

• Соединяйте шинный модуль/блок управления с сетью только после проведения функционального теста (→ 9.3).

9.1 Проверка выполнения монтажа и электрических соединений

- 1. Проверьте монтаж системы СРХ-Е.
 - Убедитесь, что соединительные элементы зафиксированы на монтажной шине и защелкнулись друг в друге.
 - Проверьте, все ли фиксаторы модулей закреплены на монтажной рейке.
 - Проверьте, защелкнуты ли все фиксаторы клеммных колодок.
- 2. Проверьте подключение электропроводки к системе СРХ-Е.
 - Проверьте разъемы функционального заземления.
 - Проверьте подсоединенные провода на прочность посадки.
 - Проверьте подвод подачи напряжения.
 - Проверьте правильность подключения датчиков и исполнительных механизмов к модулям.

9.2 Выполнение настроек на шинном модуле или системе управления

Настройки на шинном модуле или на системе управления в зависимости от типа модуля выполняются с помощью поворотных выключателей и/или DIL-переключателей.

Функции и заводские настройки поворотных выключателей и DILпереключателей (если они имеются на модуле) описаны в соответствующей сопроводительной документации.

• Выполните необходимые настройки на шинном модуле или на блоке управления, если они отличаются от заводской настройки.

9.3 Функциональный тест (без вышестоящей системы управления)

- 1. Включите электропитание ($U_{\text{EL/SEN}}$, U_{OUT}).
- 2. Проверьте характеристики системы СРХ-Е:
 - светодиодные индикаторы
 - подсоединенные исполнительные механизмы

9.4 Выполнение ввода в эксплуатацию на сети (с вышестоящей системой управления)

Примечание

Функциональный тест путем включения вышестоящей системы управления и системы СРХ-Е в неправильной последовательности.

• Включите вышестоящую систему управления и систему СРХ-Е в соответствии с заданной последовательностью используемой сети.

Информацию о вводе в эксплуатацию см. в "Инструкции по применению" для соответствующего шинного модуля

→ 1.1 Параллельно действующая документация.

9.5 Параметризация

С помощью параметризации можно адаптировать характеристики системы СРХ-Е или отдельных модулей и каналов к соответствующему случаю применения. Параметризация может выполняться с помощью соответствующего программного обеспечения компании Festo или посредством вышестоящей системы управления. Параметры имеют предварительную заводскую настройку.

Возможности параметризации зависят от используемого шинного модуля или блока управления → Описание соответствующего шинного модуля/блока управления.

Перечень и описание общих параметров см. в "Описании системы СРХ-Е" → 1.1 Параллельно действующая документация.

Параметризация с помощью программного обеспечения Festo

Соответствующее программное обеспечение для параметризации см. на портале поддержки (Support Portal) компании Festo

→ www.festo.com/sp. Информация по применению ПО включена в интегрированную функцию помощи пользователю.

Параметризация с помощью вышестоящей системы управления

Информацию о параметризации с помощью вышестоящей системы управления см. в описании соответствующего шинного модуля или блока управления.

Параметры пуска системы СРХ-Е

Системный параметр "Пуск системы" оказывает определяющее влияние на пусковые характеристики системы СРХ-Е.

- Настройка "Стандартные параметры" (предварительная): Система СРХ-Е запускается с заводской настройкой. Желательная параметризация может быть создана с помощью вышестоящей системы управления.
- Настройка "Сохраненные параметры": Система СРХ-Е запускается с параметрами, сохраненными в шинном модуле. Об этой настройке сигнализирует светодиодный индикатор "Modify" [M] → 5.3 Элементы индикации.

Если загорается светодиодный индикатор "Modify" [M], то после замены одного устройства параметризация системы не восстанавливается с помощью вышестоящей системы управления.

• Перед заменой запишите требуемые настройки и восстановите их после замены.

10 Эксплуатация

Характеристики системы в случае обнаружения неполадки зависят от параметризации вышестоящей системы управления и настройки системного параметра "Fail safe" при наличии следующих неполадок:

- сбой отправки телеграмм
- сбой сетевого соединения

В зависимости от успеха выполнения параметризации электрические выходы (заводская настройка) отключаются, включаются или сохраняют свое состояние неизменным.

Подробную информацию о системном параметре "Fail safe" см. в "Описании системы СРХ-Е" → 1.1 Параллельно действующая документация.

11 Диагностика и устранение неполадок

11.1 Средства диагностики

В зависимости от параметризации и используемого сетевого протокола доступны различные возможности диагностики ошибок:

- внутренняя диагностика системы
- светодиодные индикаторы на изделии

11.2 Внутренняя диагностика системы

Внутренняя диагностика системы включена в "Описание системы СРХ-Е" и в описания модулей

→ 1.1 Параллельно действующая документация.

11.3 Светодиодные индикаторы

Для визуализации состояния и ошибок на каждом модуле имеются различные светодиодные индикаторы. При этом необходимо различать светодиодные индикаторы системы, модуля или сети.

В настоящем документе описываются светодиодные индикаторы блоков управления и шинных модулей.

Светодиодные индикаторы для конкретного модуля и конкретной сети описаны в документации к соответствующему модулю.

	stem [PS] – Под од (зеленый)	ия U _{EL/SEN} Меры по устранению	
горит	ON OFF	Электропитание подается. Нет ошибок.	-
**	OFF MILE	Электропитание подается, но за пределами допустимого диапазона.	• Устранить пониженное напряжение.
мигает		Подключение на шинном модуле отсутствет или неполное.	• Проверьте подключение.
мигает	ON OFF	Сработал внутренний предохранитель электропитания.	• Устраните короткое замыкание/перегрузку. Электропитание впоследствии опять включается автоматически, в зависимости от параметризации (заводская насгройка), или электропитание необходимо отключить и вновь включить.
выключен	ON 7	Электропитание отсутствует.	• Проверьте разъем электропитания.

Fig. 15

	Power Load [PL] – Подача напряжения нагрузки U _{OUT}			
Светодис	од (зеленый)	Пояснение	Меры по устранению	
горит	ON OFF	Электропитание подается. Нет ошибок.	-	
	ON OFF	Электропитание подается, но за пределами допустимого диапазона.	• Устранить пониженное напряжение.	
выключен	ON OFF	Электропитание отсутствует.	• Проверьте разъем электропитания.	

Fig. 16

System F	System Failure [SF] – Системная ошибка			
Светоди (красны	• •	Пояснение	Меры по устранению	
**	ON OFF.	Несущественная ошибка/ информация (класс ошибки 1)	→ Описание системы СРХ-Е	
мигает	ON OFF	Ошибка (класс ошибки 2)		
	ON OFF	Критическая ошибка (класс ошибки 3)		
Выключен	ON OFF	Нет ошибок	-	

Светодиодный инддикатор "System Failure" [SF] мигает в зависимости от класса возникшей ошибки

Fig. 17

Modify [N	Modify [M] – Параметризация изменена, или активен режим «Forcen»			
Светодис	од (желтый)	Пояснение		
горит	ON OFF	Задан пуск системы с сохраненной параметризацией и сохраненной структурой; параметры и структура сохраняются; внешняя параметризация заблокирована. 1) Будьте осторожны при замене систем с сохраненной параметризацией. У таких систем при замене параметризация не восстанавливается автоматически с помощью вышестоящей системы управления. • Перед заменой скачайте необходимые настройки и при необходимости восстановите их после замены.		
мигает	ON OFF	Функция Forcen разблокирована. 1)		
О выключен	ON OFF	Задан пуск системы с параметризацией по умолчанию (заводская настройка) и актуальной структурой; возможна внешняя параметризация (предварительная настройка).		

Индикация функции Forcen (светодиод мигает) имеет приоритет перед индикацией настройки пуска системы с сохраненной параметризацией и сохраненной структурой (светодиод горит).

12 Техническое обслуживание

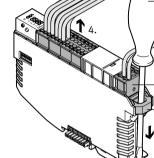
Примечание

Перегрев из-за уменьшения притока воздуха к электронному оборудованию. • Не закрывайте вентиляционные щели и регулярно удаляйте загрязнения.

13 Переоборудование

13.1 Замена модуля

Примечание


Разные характеристики, вызванные различиями в параметризации, при замене шинного модуля, системы управления или системы в целом.

• Перед заменой проверьте, какие настройки требуются, и восстановите их после замены.

Снятие клеммных колодок

При замене модуля, в ходе переоборудования или ремонта электрические провода могут оставаться в клеммных колодках, а сами колодки можно извлечь из модуля.

- 1. Обеспечьте отсутствие напряжения в модуле.
- 2. Пропустите отвертку сквозь выемку в фиксаторе клеммных колодок и введите ее в фиксатор модуля.
- 3. Потяните отвертку по направлению стрелки, чтобы освободить клеммные колодки от фиксации.
- 4. Снимите клеммные колодки.

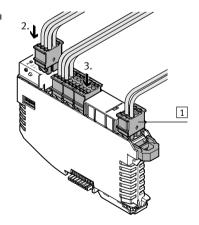
3

- Отвертка
- Клеммная колодка
- Фиксатор клеммных колодок
- 4 Фиксатор модуля

Fig. 19

После освобождения клеммных колодок от фиксации они остаются в том же положении. Неснятые клеммные колодки необходимо вновь вдавить до упора.

Разъединение и снятие модуля


• 🗲 Fig. 11

Установка и фиксация модуля

• → Fig. 10

Установка клеммных колодок

- 1. Обеспечьте отсутствие напряжения
- 2. Установите клеммные колодки в соответствующие позиции на модуле.
- 3. Вдавите клеммные колодки до упора.

1 Клеммная колодка

Во избежание ошибок подсоединения клеммные колодки сигналов и клеммные колодки электропитания взаимно кодированы.

13.2 Замена соединительного элемента

- 1. Разъедините и снимите модули → Fig. 11.
- 2. Разъедините соединительные элементы раздвигая из.
- 3. Нижний фиксатор соединительного элемента отсоедините от монтажной рейки.
- 4. Снимите соединительный элемент с монтажной рейки.
- 5. Подвесьте новый стыкующий элемент → Fig. 9.
- Соединительный элемент
- Монтажная рейка
- Нижний фиксатор соединительного элемента

Fig. 21

14 Утилизация

• Организуйте утилизацию упаковки и изделия по истечении срока службы изделия согласно действующим правилам экологически безопасной утилизации.

3

2

15 Технические характеристики

Общая информация			
араметр		Указание/значение	
Монтажное положение		Вертикальное/горизонтальное	
Температура окружающей среды	[°C]	-5 +60 (-5 +50) ¹⁾	
Температура хранения	[°C]	-20 +70	
Влажность воздуха (без конденсации)	[%]	0 95	
Макс. допустимая высота установки над уровнем моря	[M]	2000	
Макс. количество модулей в одной системе С включая шинный модуль или блок управлен		11	
Адресное пространство входов/вых одов	[байт]	64/64 (максимально)	
Класс защиты согласно EN 60529		IP20	
Защита от удара электротоком (защита от пр косвенного прикосновения согласно IEC 602		За счет использования электрических цепей защитного сверхнизкого напряжения PELV (Protected extra-low voltage)	
Знак СЕ (см. декларацию о соответствии) → www.festo.com		Согласно Директиве ЕС по ЭМС	
Взрывозащита (IECEx/ATEX)		→ Специальная документация АТЕХ	
Сертификация		RCM Mark	
Степень загрязнения		2	
Виброустойчивость и ударопрочность соглас	но ЕN 600682)		
Вибрация (часть 2-6)		Монтажная рейка SG1	
Ударное воздействие (часть 2-27)		Монтажная рейка SG1	
Продолжительное ударное воздействие	(часть 2-27)	Монтажная рейка SG1	

- 1) При горизонтальном монтажном положении
- 2) Расшифровка уровней интенсивности → Fig. 23 ... Fig. 25

Fig. 22

Нагрузка от вибрации					
Диапазон частот [Гц]		Ускорение [м/с²]		Отклонение [мм]	
SG1	SG2	SG1	SG2	SG1	SG2
28	28	-	-	±3,5	±3,5
8 27	8 27	10	10	-	-
27 58	27 60	-	-	±0,15	±0,35
58 160	60 160	20	50	-	-
160 200	160 200	10	10	-	-

Fig. 23

Нагрузка от ударного воздействия					
Ускорен	ие [м/с ²]	Длительность [мс]		Количество ударов в каждом направлении	
SG1	SG2	SG1	SG2	SG1	SG2
±150	±300	11	11	5	5

Fig. 24

Нагрузка от продолжительного ударного воздействия			
Ускорение [м/с ²]	c ²] Длительность [мс] Количество уда каждом направ		
±150	6	1000	

Fig. 25

Параметр		Указание/значение
Подача рабочего напряжения U _{EL/SEN}		
Номинальное рабочее напряжение	[В пост. тока]	24 ± 25 %
Порог срабатывания для выявления пониженного напряжения	[В пост. тока]	17,5
Макс. нагрузка по току для клеммной колодки	[A]	8
Время перехода на резервный источник питания при отказе сетевого питания		В зависимости от типа модуля 1)
Подача напряжения нагрузки U _{OUT}		
Номинальное рабочее напряжение	[В пост. тока]	24 ± 25 % ²⁾
Порог срабатывания для выявления пониженного напряжения		В зависимости от типа модуля 1)
Макс. нагрузка по току для клеммной колодки	[A]	8

- 1) 🗲 Документация к модулям
- 2) Указания по допускам у некоторых модулей различаются.

Fig. 26

1

Параметр		Указание/значение		
		4 контакта	6 контактов	
Сечение провода	l			
Массивный	[mm ²]	0,14 1,5		
Гибкий	[mm ²]	0,14 2,5	0,14 1,5	
Сибкий, запрессованным концом				
Без пластмассовой гильзы	[mm ²]	0,14 1,5	0,14 1,5	
С пластмассовой гильзой	[mm ²]	0,14 1,5	0,14 1,0	
Длина втулки для запрессовывания провод	а без пластмас	совой гильзы ¹⁾		
Сечение провода 0,14 1,0 мм ²	[MM]	8 10		
Сечение провода 1,5 мм ²	[MM]	8 10	10	
Длина втулки для запрессовывания провод	а с пластмассо	вой гильзой ²⁾	<u> </u>	
Сечение провода 0,14 0,34 мм ²	[MM]	8 10	8 10	
Сечение провода 0,5 1,0 мм ²	[MM]	8 10	10	

- Согласно DIN 46228-1
 Согласно DIN 46228-4

Fig. 27