
Поворотный привод

DRRD-12 ... 63

FESTO

ru Руководство по эксплуатации

8074788 2017-10d [8074795]

Оригинальное руководство по эксплуатации

Обозначения:

Предупреждение

Монтаж и ввод в эксплуатацию должны проводиться только специалистами соответствующей квалификации согласно данному руководству по эксплуатации.

Осторожно

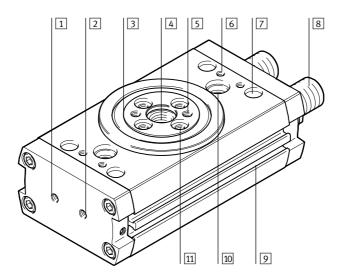
Примечание

Окружающая среда

Принадлежности

Русский – Поворотный привод DRRD-12 ... 63

Содержание


1	Элементы управления и точки подсоединения	4
2	Принцип действия и применение	5
3	Условия применения изделия	6
4	Транспортировка и хранение	7
5	Монтаж	7
5.1	Механический монтаж	7
5.2	Монтаж пневматической части	9
5.3	Монтаж электрической части	9
6	Ввод в эксплуатацию	10
6.1	Ввод в эксплуатацию. Настройка конечных положений	10
6.2	Ввод в эксплуатацию. Выполнение	12
7	Управление и эксплуатация	13
8	Техническое обслуживание и уход	14
9	Демонтаж и ремонт	15
10	Принадлежности	16
11	Устранение неполадок	16
12	Технические характеристики	17

Документация на изделие

Вся доступная документация на изделие → www.festo.com/pk

1 Элементы управления и точки подсоединения

- Пневматический канал (поворот по часовой стрелке)
- Пневматический канал (поворот против часовой стрелки)
- 3 Вал с фланцем
- Канал вала для прохода
 магистралей/шлангов сжатого воздуха
 с центрирующим отверстием
- Б Резьба для дополнительного фланца (фланца-принадлежности)
- 6 Резьба для изделия-принадлежности (например, для фиксатора и внешнего амортизатора)
- 7 Центрирующее отверстие для принадлежностей
- Демпфер для настройки угла поворота, зафиксирован контргайками (2x)
- Паз для бесконтактных датчиков положения(2х для DRRD-12); (4х для DRRD-16 ... 63)
- 10 Крепежный интерфейс DRRD (2x)
- 11 Крепежный интерфейс полезной нагрузки (4x)

Fig. 1

2 Принцип действия и применение

Поворотный привод DRRD является двухпоршневым приводом двустороннего действия. За счет поочередной подачи воздуха в пневматические каналы питания два параллельно расположенных поршня осуществляют возвратно-поступательное движение в противоположном друг другу направлении. Это линейное перемещение преобразуется посредством шестерни в поворотное перемещение выходного вала.

Демпфирование в конечных положениях осуществляется следующим образом:

- DRRD-...-Р с помощью эластичного демпфера
- DRRD-...-Y9/Y10/Y14 с помощью внутренних гидравлических амортизаторов
- DRRD-...-Y12 с помощью внешних гидравлических амортизаторов
 - (→ инструкция по монтажу).

Неполноповоротный привод DRRD предназначен для поворота полезных нагрузок, которые должны поворачиваться на определенный угол.

3 Условия применения изделия

Примечание

Функциональные неисправности и материальный ущерб из-за неправильного обращения.

- Постоянно соблюдайте заданные условия, которые описаны в этой главе. Только в этом случае всегда обеспечивается правильная и надежная работа изделия.
- Соблюдайте действующие в отношении области применения установленные законом регламенты, а также:
 - нормативные предписания и стандарты
 - регламенты органов технического контроля и страховых компаний
 - государственные постановления.
- Учитывайте предупреждения и указания, приведенные на изделии и в соответствующих руководствах по эксплуатации.
- Удалите все элементы транспортной упаковки, такие как пленка, колпачки, картон (за исключением возможных элементов заглушек в пневматических каналах).
 Упаковка пригодна для утилизации по виду материала (исключение: промасленная бумага, утилизируется как "остальной мусор").
- Учитывайте данные по материалам (→ 12 Технические характеристики).
- Используйте изделие в оригинальном состоянии без внесения каких-либо самовольных изменений.
- Учитывайте окружающие условия в месте применения.
 Агрессивная среда (например, присутствие озона) сокращает срок службы изделия.
- Сравните указанные в настоящем руководстве по эксплуатации предельные значения с предельными значениями, действующими в конкретных условиях применения (например, значения давления, усилия, моментов, температуры, массы, скорости).
 Только при соблюдении ограничений по нагрузке возможна эксплуатация изделия согласно применимым директивам о безопасности.
- Учитывайте допуск для моментов затяжки. Если не указано иное, то допуск составляет ± 20 %.
- Не изменяйте винты и резьбовые штифты, если в данном руководстве нет четкого требования сделать это. Из соображений безопасности они закреплены клеем для стопорения резьбовых соединений.

При монтаже в вертикальном положении:

- Убедитесь в том, что при неподвижном состоянии привод достигает стабильного положения (например, находится в самой нижней точке или является вариантом с фиксатором
 → 10 Принадлежности).
- Обеспечьте подачу сжатого воздуха с надлежащей подготовкой (→ 12 Технические характеристики).
- Не меняйте выбранную среду на протяжении всего срока службы изделия (например, всегда используйте сжатый воздух, не содержащий масла).
- Подачу воздуха во всей установке следует осуществлять плавно.
 Тогда не возникнет каких-либо неконтролируемых движений.
 Для плавной подачи давления в начале работы служит клапан плавного пуска HEL.

4 Транспортировка и хранение

• Учитывайте вес DRRD: он может весить до 20 кг (→ 12 Технические характеристики).

5 Монтаж

5.1 Механический монтаж

Примечание

- Обращайтесь с DRRD таким образом, чтобы не повредить приводной вал. Это относится, прежде всего, к нижеприведенным пунктам:
- 1. Расположите DRRD так, чтобы элементы управления и каналы всегда были легкодоступны.
- Закрепите DRRD двумя винтами и центрирующими втулками на крепежном интерфейсе 10.
 Момент затяжки приведен в следующей таблице (→ Tab. 1).

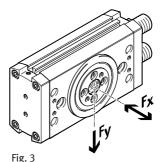
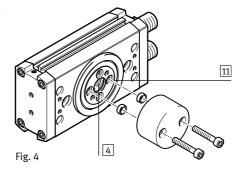



Fig. 2

Типоразмер		12	16	20	25	32	35	40	50	63
Винт (прямое крепление)	Винт (прямое крепление)		M5	M5	M6	M8	M8	M10	M10	M12
Момент затяжки	[H·м]	6	6	6	10	18	18	30	30	55
Винт (сквозное крепление)		M4	M4	M4	M5	M6	M6	M8	M8	M10
Момент затяжки	[H·м]	3	3	3	6	10	10	18	18	30
Центрирующая втулка ZBH	[MM]	9	9	9	12	15	15	15	15	25

Tab. 1

- При необходимости протяните через полый приводной вал специальные магистрали или воспользуйтесь плитой для подвода энергии к устройствам на приводном валу (захвату и его датчикам).
 - Канал вала для прокладки магистралей имеет следующие размеры (→ Tab. 2).
- Убедитесь в том, что при монтаже полезной нагрузки соблюдаются следующие заданные условия:
 - монтаж без перекоса
 - допустимое радиальное усилие Fy
 - допустимое осевое усилие Fx
 - допустимый момент инерции масс
 - максимально возможная симметричность конструкции относительно оси вращения.


Должен быть рассчитан момент инерции масс полезной нагрузки. В расчете следует учитывать плечи рычага, консоли и нагрузки (максимально допустимые значения → данные каталога, www.festo.com/catalogue).

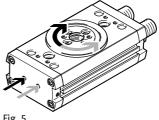
Примечание

При высоких требованиях к показателям биения элементов на валу с фланцем:

- Используйте осевое центрирование 4 и дополнительно один из 4 имеющихся центрирующих элементов.
- Закрепите полезную нагрузку на приводном фланце с помощью минимум двух винтов, расположенных напротив друг друга, и центрирующих втулок на крепежном интерфейсе 11.
 Момент затяжки приведен в следующей таблице (→ Таb. 2).

Типоразмер		12	16	20	25	32	35	40	50	63
Канал вала 4	[ww]	5	8	8	10,5	10,5	10,5	21	21	21
Центрирующая втулка ZBH для	[MM]	7	12	12	15	15	25	25	25	25
осевого центрирования										
Винт для резьбы на аА		М3	M4	M4	M5	M6	M6	M6	M8	M10
Центрирующая втулка ZBH	[MM]	5	7	7	9	9	9	9	12	15
Момент затяжки	[H·м]	1,2	3	3	6	10	10	10	20	40

Tab. 2


5.2 Монтаж пневматической части

 При необходимости уберите заглушки из пневматических каналов.

Для настройки скорости поворота:

 Используйте дроссели с обратным клапаном GRLA.

Они вкручиваются непосредственно в пневматические каналы питания.

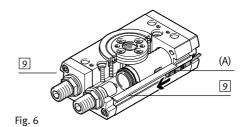
rig. 5

При вертикальном монтаже и эксцентрическом расположении нагрузок:

• Используйте управляемые обратные клапаны HGL или ресивер сжатого воздуха VZS.

При резком падении давления это позволит предотвратить неуправляемое перемещение полезной нагрузки вниз.

5.3 Монтаж электрической части



Примечание

Конструкция обеспечивает множественное срабатывание бесконтактных датчиков положения.

- Следите за тем, чтобы бесконтактные датчики положения всегда были настроены на первую точку переключения.
 - С этой целью задвигайте бесконтактный датчик положения (A) с того конца паза, на котором находится опрашиваемый поршень, до тех пор, пока не произойдет первое переключение.
- Установите датчики для опроса конечных положений в пазы 9.

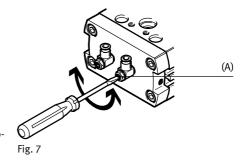
При использовании внешнего блока считывания возможен опрос с помощью индуктивных бесконтактных датчиков положения (→ 10 Принадлежности).

6 Ввод в эксплуатацию

Предупреждение

Опасность травмирования из-за вращающихся нагрузок.

- Убедитесь в том, что DRRD приводится в движение только при активных защитных устройствах.
- Убедитесь в том, что в зону поворота DRRD
 - не могут попасть руки
 - не могут попасть посторонние предметы (например, установив индивидуальную защитную решетку).



Примечание

- Обеспечьте соблюдение следующих обязательных условий:
 - все демпферы зафиксированы контргайками
 - условия эксплуатации находятся в разрешенных диапазонах
 - требования инструкции по монтажу DRRD-...-Y12 соблюдаются.

6.1 Ввод в эксплуатацию. Настройка конечных положений

- 1. Поверните оба установленных дросселя с обратным клапаном (A):
 - вначале полностью в сторону закрытия,
 - затем снова в сторону открытия примерно на один оборот.
- 2. Подавайте воздух в привод согласно одной из следующих альтернатив (на выбор):
 - плавная подача воздуха в одну полость
 - одновременная подача воздуха в обе полости с последующим сбросом воздуха из одной из полостей.

Примечание

Опасность повреждения!

Если демпфер выкручен далеко, это приводит к слишком малому демпфированию поршня, который ударяется о концевую крышку.

- Используйте только допустимые настройки для демпферов (→ Tab. 4).
- Подайте воздух в соответствующий канал, чтобы повернуть DRRD в требуемое конечное положение.
- 4. Ослабьте контргайку демпфера.

Fig. 8

5. Поворачивайте соответствующий демпфер до тех пор, пока не будет достигнуто желаемое конечное положение.

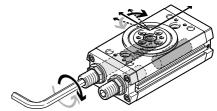


Fig. 9

Настройка величины угла	Реакция	Диапазон настройки по отношению к заводской базовой настройке (пример: DRRD180)
Поворот демпфера по часовой стрелке	Уменьшение величины угла поворота	X° 90° X°
Поворот демпфера против часовой стрелки	Увеличение величины угла поворота	0 180°

Tab. 3 Возможны следующие настройки:

Типоразмер		12	16	20	25	32	35	40	50	63
Эластичный демпфер для DRRDP		E →								
Настройка величины угла за один оборот	[°]	9,6	8,7	9,0	6,6	8,2	8,2	5,4	-	
Макс. настройка демпфера XPmax	[ww]	18,8	19	19,4	26,1	31,8	43,2	44,7	_	
Мин. настройка демпфера XPmin	[ww]	6	6	6,7	9	11	13,5	13,5	_	
Гидравлический демпфер для DRRDY9/Y10/Y14										
Настройка величины угла за один оборот	[°]	9,6	8,7	9,0	6,6	8,2	8,2	5,4	3,8	2,9
Макс. настройка демпфера ХҮтах	[ww]	29,9	38,5	43,3	64,9	80,7	99,9	101,4	130,4	126,9
Мин. настройка демпфера XYmin				ьного у						

Tab. 4

6. Снова затяните контргайку демпфера со следующим моментом затяжки:

Типоразмер			12	16	20	25	32	35	40	50	63
⇒ Внутренний шестигранник	Р	[MM]	5	5	6	8	10	10	10	-	
	Y9/Y10/Y14	[ww]	2,5	3	4	5	5	6	6	8	8
=© Контргайка		[MM]	10	13	15	19	27	32	32	36	46
Момент затяжки		[H·м]	2	3	5	20	35	60	60	80	100

Tab. 5

7. Повторите процедуру для настройки второго конечного положения.

6.2 Ввод в эксплуатацию. Выполнение

- 1. Проведите тестовый запуск с низкой скоростью поворота.
- 2. Во время тестового запуска проверьте, не требуется ли корректировка настроек DRRD. Это могут быть, например:
 - диапазон поворота полезной нагрузки (→ Tab. 3)
 - скорость поворота полезной нагрузки
- 3. Плавно открывайте дроссели с обратным клапаном (A) до тех пор, пока не установится нужная скорость поворота.
- 4. Прервите тестовый запуск, если услышите отчетливый звук сильного удара поршня. Причинами металлического стука могут быть:
 - слишком большой момент инерции масс полезной нагрузки
 - слишком высокая скорость поворота полезной нагрузки
 - отсутствие пневматического демпфирования на выхлопе
 - демпфер выкручен слишком сильно (максимальные значения → Tab. 4).
- 5. Устраните вышеназванные причины.
- 6. Завершите тестовый запуск после выполнения всех необходимых корректирующих действий.

7 Управление и эксплуатация

Предупреждение

Опасность травмирования вследствие перемещаемых нагрузок.

- Убедитесь в том, что в зону поворота DRRD
 - не могут попасть руки
 - не могут попасть посторонние предметы (например, установив индивидуальную защитную решетку).

При нескольких непрерывных циклах поворота:

Примечание

Из-за слишком сильного нагрева снижается уровень функциональной безопасности.

 Следите за тем, чтобы не превышалась указанная ниже максимальная частота поворотов.

Типоразмер			12	16	20	25	32	35	40	50	63
Максимальная частота	Р	[Гц]	2,4	2,9	2,0	2,0	2,1	1,4	1,5	-	
поворотов ^{1) 2)}	Y9	[Гц]	1,3	1,25	1,4	0,9	0,5	0,45	0,5	0,5	0,6
	Y10	[Гц]	-	•		0,6	-	0,3	0,3	0,3	0,28
	Y14	[Гц]	-	2,9	2,1	1,7	1,0	0,9	1,1	-	

При температурах ниже 0 °С для всех исполнений Y9/Y10/Y14 следует учесть увеличение времени возврата, поэтому при определенных условиях невозможно будет достичь максимальной частоты поворотов

Tab. 6

²⁾ Температура корпуса амортизатора не должна превышать 60 °C

8 Техническое обслуживание и уход

Для контроля функционирования амортизаторов:

• Выполните следующие действия:

DRRD	P	Y9/Y10/Y12/Y14
Интервал	2 млн циклов переключения	2 млн циклов переключения
проверки		(DRRD-12 40)
		1 млн циклов переключения
		(DRRD-50/63)
Порядок	1. Проверить функционирование	1. Проверить функционирование
действий	демпфирующих элементов.	демпфирующих элементов на
	При отчетливо слышимых ударах или	отсутствие ударов и упругой отдачи.
	упругой отдаче:	2. Выкрутить амортизаторы и
	2. Заменить демпфирующие	проверить на утечку масла.
	элементы и уплотнения	При отчетливо слышимом ударе,
	(демпфирующие элементы перед	упругой отдаче или видимых признаках
	монтажом смазать, например,	потерь масла:
	LUB-KC1).	3. Заменить амортизаторы и
		уплотнения (→ 9 Демонтаж и
		ремонт).
Интервал	При наличии признаков износа	При наличии признаков пробития,
замены	(пробивания амортизатора)	утечки масла или
		через каждые 10 млн циклов
		переключения (DRRD-12 40)
		через каждые 5 млн циклов
		переключения (DRRD-50)
		через каждые 2 млн циклов
		переключения (DRRD-63)

Tab. 7

При отчетливом звуке сильного удара поршня в конечном положении:

- В случае износа замените следующие элементы (> 9 Демонтаж и ремонт):
 - внутренние демпфирующие элементы DRRD-...-P
 - оба амортизатора DRRD-...-Y9/Y10/Y14.
- В случае загрязнения очищайте DRRD мягкой тканью.

Допустимые средства очистки:

- теплый мыльный раствор до +60 °C
- промывочный бензин
- все средства, которые не разрушают соответствующие материалы.

9 Демонтаж и ремонт

При эксцентрическом расположении нагрузок на плече рычага:

Предупреждение

Опасность травмирования из-за нагрузок, которые перемещаются вниз.

• Убедитесь в том, что полезная нагрузка перед сбросом воздуха достигла устойчивого положения (например, находится в самой нижней точке).

Примечание

- Обеспечьте, чтобы давление из поворотного привода перед демонтажем было сброшено.
- Рекомендация: отправьте изделие в нашу ремонтную службу.
 В этом случае будут проведены все требуемые процедуры тонкой регулировки и испытаний.
- Информацию о запасных частях и вспомогательных средствах см. на сайте: www.festo.com/spareparts

Для замены встроенных демпфирующих элементов/амортизаторов (→ 10 Принадлежности):

• Выполните следующие действия:

шайбы (→ (В) на Fig. 10)

- 1. Сбросьте воздух из DRRD.
- 2. Измерьте позицию демпфера (величина XP или XY) и открутите контргайку на демпфере 8.
- 3. Выкрутите демпфер и:
 - смажьте (например, LUB-КС1) и установите новый демпфирующий элемент (для DRRD-...-Р).
 При необходимости используйте новые уплотнительные
 - замените амортизаторы (для DRRD-...-Y9/Y10/Y14).
 При необходимости используйте новые уплотнительные шайбы (→ (C) на Fig. 10).
- 4. Вкрутите демпфер до отметки XP или XY (→ точка 2).
- 5. Проверьте и при необходимости скорректируйте настройку величины угла.
- Затяните контргайку на демпфере 8 (момент затяжки → Таb. 5).

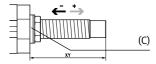


Fig. 10

10 Принадлежности

Примечание

• Выберите соответствующие принадлежности из нашего каталога (→ www.festo.com/catalogue).

11 Устранение неполадок

Неполадка	Возможная причина	Способ устранения
Неравномерное перемещение	Неправильно установлены	Проверить функционирование
полезной нагрузки	дроссели	дросселей (дросселирование
		подводимого или выхлопного
		воздуха)
	Асимметричная настройка	Использовать
	величины угла	преимущественно
		симметричные настройки
	DRRD неисправен	Отправить в Festo
Жесткий металлический удар	Слишком большая остаточная	Выбрать более низкую
в конечном положении	энергия	скорость поворота
		Использовать внешние
Выходной вал не остается в		амортизаторы
конечном положении (отскок)		(→ 10 Принадлежности)
		Перемещаться только
		с регулированием скорости
		на выхлопе
		Выбрать меньшую массу
		нагрузки
	Поворотный привод движется	Подать в поворотный привод
	к полости, в которую	воздух с обеих сторон
	не подается воздух	
	Демпфер выкручен слишком	Соблюдать максимально
	сильно	допустимую длину
		вывинчивания
	Амортизатор/демпфирующий	Заменить амортизатор/
	элемент неисправен/изношен	демпфирующий элемент
		(→ 9 Демонтаж и ремонт)

Tab. 8

12 Технические характеристики

Типоразмер			12	16	20	25	32	35	40	50	63	
Конструкция			непол	нопов	оротн	ый при	вод со	сдвое	енным	порш	нем	
Двустороннее демпфирование	Р		эласти	ічное д	демпф	ирова				-		
	Y9		гидравлический амортизатор									
	Y10		-				вличес кий) ⁴⁾	ский ал	иортиз	ватор		
	Y14		– гидравлический амортизатор (мяг- – кий)									
Пневматическое присо	оединение		M5 M5 M5 M5 G1/8 G1/8 G1/8 G1/4 G3/8									
Рабочая среда			сжаты	й возд	ух сог	пасно	ISO 85	73-1:2	010[7	:4:4]		
Указание по рабочей с		возмо масло	жна эн (требу	ксплуа /ется в	тация ; дальн	с возд іейшей	ухом, о і экспл	одеря іуатаці	кащим ии)			
Рабочее давление										-		
	[бар]	2 10)									
Монтажное положение	9		любое									
Угол поворота		[°]	180									
Диапазон настройки с двух	Р	[°]	бесступенчатая регулировка в диапазоне – –100 +10									
сторон	Y9/Y10/Y14	[°]	бесступенчатая регулировка в диапазоне –100 +101)									
Угол демпфирования (минимальный угол	Р	[°]	32	36	45	33	33	36	23	-		
поворота Z)	Y9/Y10/Y14	[°]	48	43	72	79	82	85	56	61	48	
Точность повторения		[°]	≤ 0,03	< 0,0	5	ļ	Į.	1	1	≤ 0,0	3	
Окружающая температ	ура	[°C]	-10	+60						1		
Крутящий момент при 6 бар (теоретич.)		[H·м]	0,8	1,59	2,41	5,15	10,1	15,8	24,1	53,0	112	
Макс. осевая нагрузка ская)	(статиче-	[кН]	1,43)	1,5	2,4	2,4	3,75	6,1	6,1	9,0	11,0	
Макс. допустимое осен	вое и		завис	ит от ра	асстоя	ния до	точки	прило	жения	усили	ІЯ	
радиальное усилие на		лу	(→ wv	vw.fest	to.com	/catal	ogue)	-				
Макс. Допустимый			завис				_					
момент инерции масс						/catal						
Настройка конечных п							1рующ					
Указание по материала	M						,	лабляі	ощих а	адгези	Ю	
			лакок	расочн	ных по	крыти	и)					

¹⁾ Возможно сокращение на одной стороне > 100°, угол демпфирования принимать как минимальный угол поворота

²⁾ Базовое исполнение с внутренним демпфированием без принадлежностей

³⁾ Прижимающая нагрузка (растягивающая нагрузка: 0,33 кН)

⁴⁾ Y10 недоступно при использовании DRRD-32

Типоразмер			12	16	20	25	32	35	40	50	63			
Материалы														
Корпус, крышка				алюминий, анодированный										
Вал, винты, заглу упорный щиток <i>д</i>	сталь													
Уплотнения	термопластичный полиуретан (полиуретан), нитрильный каучук													
Вес изделия ²⁾	Р	[кг]	0,38	0,64	0,84	1,35	2,82	4,51	6,07	-				
	Y9/Y10)/Ү14[кг]	0,39	0,65	0,88	1,36	2,98	4,78	6,42	11,3	19,1			

¹⁾ Возможно сокращение на одной стороне > 100°, угол демпфирования принимать как минимальный угол поворота

Tab. 9

²⁾ Базовое исполнение с внутренним демпфированием без принадлежностей

³⁾ Прижимающая нагрузка (растягивающая нагрузка: 0,33 кН)

⁴⁾ Y10 недоступно при использовании DRRD-32

Copyright: Festo AG & Co. KG Ruiter Straße 82 73734 Esslingen Германия

Phone: +49 711 347-0

Fax: +49 711 347-2144

E-mail: service_international@festo.com

Internet: www.festo.com

Передача другим лицам, а также размножение данного документа, использование и передача сведений о его содержании запрещаются без получения однозначного разрешения. Лица, нарушившие данный запрет, будут обязаны возместить ущерб. Все права в случае выдачи патента на изобретение, полезную модель или промышленный образец защищены.