
Модуль промежуточной позиции

SLG-Z-...

FESTO

(ru) Руководство по эксплуатации

8074758 2017-10b [8074765]

Перевод оригинального руководства по эксплуатации

Обозначение:

Предупреждение

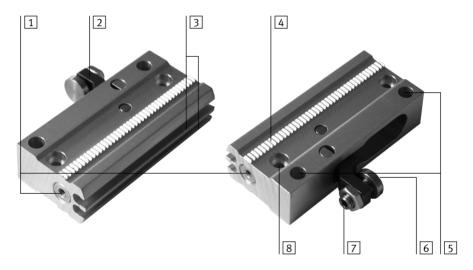
Монтаж и ввод в эксплуатацию должны проводиться только специалистами соответствующей квалификации согласно данному руководству по эксплуатации.

Осторожно

Примечание

Окружающая среда

Принадлежности


Модуль промежуточной позиции типа SLG-Z-...

Документация на изделие

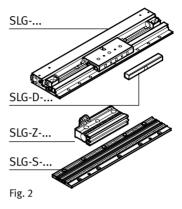
Вся доступная документация на изделие → www.festo.com/pk

1 Элементы управления и точки подсоединения

- 1 Присоединительная резьба пневматического канала
- 2 Упорный рычаг с упорным элементом
- 3 Пазы для бесконтактных датчиков положения
- 4 Зубчатый профиль для примерного позиционирования
- 5 Центрирующие отверстия (для позиционирования без монтажной рейки типа SLG-...-S-...)
- 6 Упорный элемент с упорным диском
- 7 Резьба для точной настройки упорного элемента (фиксацию обеспечивает контргайка)
- 8 Крепежные отверстия (вкладыши и крепежные винты входят в комплект поставки)

Fig. 1

2 Принцип действия и применение


Модуль промежуточной позиции является частью модульной системы линейного привода SLG-... . В состав этой системы также входят:

- держатель амортизатора типа SLG-D-...,
- монтажная рейка типа SLG-S-... и
- модуль промежуточной позиции типа SLG-Z-....

Упорный рычаг 2 модуля промежуточной позиции за счет подачи воздуха в пневматические каналы поворачивается внутрь и наружу. При повороте наружу каретка линейного привода (например, привода SLG-...) ударяется об упорный элемент упорного рычага и оказывается таким образом в промежуточной позиции.

На внутреннем сдвоенном поршне модуля промежуточной позиции закреплен магнит. Позицию поршня, а, следовательно, положение упорного рычага (повернут наружу или внутрь) может регистрировать датчик положения в пазу 3 модуля промежуточной позиции.

Модуль промежуточной позиции предназначен для гашения сил инерции в позиции между конечными положениями линейных приводов (например, в сочетании с модульной системой промежуточной позиции в приводах типа SLG-...). В пределах допустимой нагрузки модуль промежуточной позиции выполняет также функцию упора.

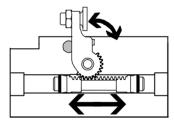


Fig. 3

3 Условия применения изделия

Примечание

Неправильное обращение приводит к нарушениям в работе.

- Следите за тем, чтобы пункты указаний этой главы всегда соблюдались. Так обеспечивается правильность и надежность функционирования изделия.
- Сравните предельные значения, указанные в данном руководстве по эксплуатации, с предельными значениями в конкретном случае применения (например, значения давления, силы упора, энергии упора, моментов, температуры).

Только при соблюдении ограничений по нагрузке возможна эксплуатация изделия согласно применимым директивам по безопасности.

- Проследите за тем, чтобы сжатый воздух прошел надлежащую подготовку.
- Соблюдайте действующие на территории конкретной страны положения, например, предписания профсоюзов или соответствующих национальных организаций.
- Снимите упаковку.

Упаковка пригодна для утилизации по виду материала (исключение: промасленная бумага, утилизируется как "остальной мусор").

- Учитывайте условия окружающей среды в месте применения.
- Используйте SLG-Z-... в чистой среде.
 Нерастворимые загрязнения при определенных условиях приводят к тому, что рычаг с трудом поворачивается.

- Подачу давления во всей установке следует осуществлять плавно. Для этого используется клапан плавного пуска типа HEL-....
- Используйте изделие в оригинальном состоянии без самовольного внесения каких-либо изменений.

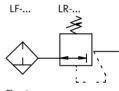


Fig. 4

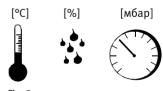


Fig. 5

Fig. 6

4 Монтаж

Монтаж механического оборудования

Примечание

Если при контакте с упором нагрузка находится в наклонном положении, упорный элемент разрушается.

Убедитесь, что энергия демпфирования все время направлена вертикально, по возможности в центр упорного диска 6.

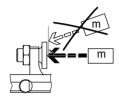


Fig. 7

- Вкрутите по одному соединительному штуцеру (см. "Принадлежности") соединительную резьбу 1.
- Закрепите держатель амортизатора SLG-D-... следующим образом:
- Задвиньте демпфирующие элементы (амортизатор или резиновый упор) в держатель амортизатора.

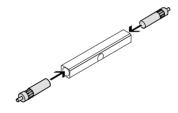
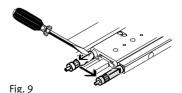
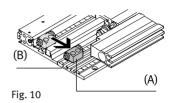




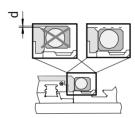
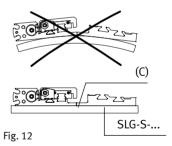
Fig. 8

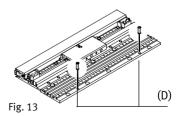
При дооборудовании имеющегося привода типа SLG-... можно использовать имеющиеся амортизаторы. Открепите их при помощи отвертки и задвиньте в держатель амортизатора (см. рисунок 9).

Затем необходимо демонтировать оба концевых упора (A) привода SLG-... и снова установить на одинаковой высоте в паз (B) монтажной рейки.

 Закрепите держатель амортизатора при помощи центрирующих штифтов и входящего в комплект поставки крепежного винта на направляющей линейного привода (например, тип SLG-...).

При этом следите за тем, чтобы соблюдалась правильная ориентация. Правильно установленный держатель амортизатора находится под кромкой направляющей SLG-... (см. рисунок 11).


Fig. 11

• Закрепите монтажную рейку типа SLG-S-... следующим образом:

Приложите монтажную рейку типа SLG-S-... к профилированной кромке (С), выровняйте ее при помощи установочных штифтов (D) и закрепите, затянув винты во всех крепежных отверстиях. Поверхность прилегания должна быть ровной (см. руководство по эксплуатации SLG-...).

Необходимые моменты затяжки представлены в следующей таблице:

Тип	SLG-Z-8	SLG-Z-12	SLG-Z-18
Момент затяжки – Держатель амортизатора – Крепежная шина – Модуль промежуточного	2,9 H·м 1,2 H·м	2,9 H·м 1,2 H·м	5,9 H·м 2,9 H·м
положения	0,76 Н∙м	0,76 Н∙м	1,2 Н∙м

Fig. 14

- Закрепите модуль промежуточной позиции типа SLG-Z-... следующим образом:
- 1. Вставьте вкладыш в паз (E) монтажной рейки и вверните два крепежных винта через модуль среднего положения во вкладыши. После этого должна еще сохраниться возможность перемещения модуля среднего положения SLG-Z-....
- Сдвиньте каретку не находящегося под давлением линейного привода (например, каретку привода типа SLG-...) рукой в промежуточную позицию.
- Расположите модуль промежуточной позиции в направлении упора и поместите его в зубчатый профиль монтажной рейки (упор может быть слева или справа). Позицию упорного элемента относительно среднего положения можно впоследствии дополнительно отрегулировать в пределах ± 0,75 мм.

При этом нужно соблюдать допустимое минимальное расстояние X_1 для поворота упорного рычага внутрь и для пневматических разъемов X_2 (см. Fig. 17).

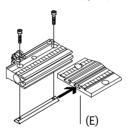
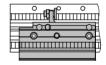



Fig. 15

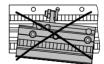


Fig. 16

SLG-Z	8	12	18	X ₁
Минимальное расстояние – для поворота упорного рычага внутрь X ₁ – для резьбового соединения X ₂	23 mm 16 mm	23 mm 16 mm	31 mm 16 mm	X ₂ X ₂

Fig. 17

Монтаж пневматического оборудования

• Присоедините шланги к пневматическим каналам 1.

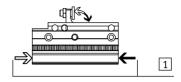


Fig. 18

Электрический монтаж

При использовании датчиков положения:

Установите бесконтактные датчики положения в паз 3 модуля промежуточной позиции (Fig. 19).

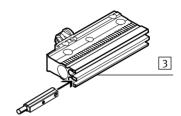
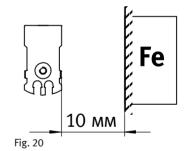



Fig. 19

Закрепите датчик положения в конечном положении.

При этом следует соблюдать минимальное расстояние L 10 мм до ферромагнитных деталей.

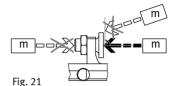
Подключение к системе управления

Примечание

Упорный рычаг может разрушиться при втягивании амортизатора.

• Позаботьтесь о том, чтобы каретка линейного привода при втягивании упорного рычага находилась за пределами зоны поворота (например, установите в системе управления задержку активации).

Скорость поворота упорного рычага внутрь превышает скорость перемещения каретки SLG-....


5 Ввод в эксплуатацию

Примечание

Слишком большие нагрузки на упорном рычаге приводят к неправильному функционированию.

- Убедитесь в том, что следующие пункты всегда соблюдаются:
 - направление упора, как показано на рисунке 21;
 - для упорного рычага достаточно места для поворота внутрь и наружу (допустимые расстояния см. в главе "Монтаж механического оборудования").
 - упорный рычаг своевременно выдвинулся;
 - каретка линейного привода за пределами зоны поворота; упорного рычага.

Примечание

При втягивании упорного рычага возможно защемление конечностей.

- Проверьте зону перемещения упорного рычага и убедитесь, что там:
 - никого нет,
 - нет посторонних предметов.

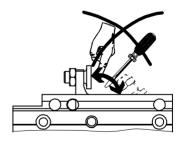


Fig. 22

- 1. Поверните упорный рычаг SLG-Z-... рукой внутрь.
- 2. Сдвиньте каретку линейного привода рукой в конечное положение, в направлении от которого должен происходить подвод к промежуточной позиции.
- 3. Подайте воздух в модуль промежуточной позиции SLG-Z-... следующим образом:
 - Сначала обеспечьте одновременную подачу воздуха в обе полости.
 В результате направляющая немного сдвинется до своего центра тяжести.
 - Затем сбросьте воздух из полости цилиндра для перемещения в выдвинутое положение (А на рисунке 23). В результате упорный рычаг начнет под давлением перемещаться во втянутое положение.

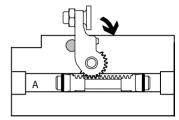


Fig. 23

- 4. Подайте воздух на линейный привод (например, привод SLG-...) так, чтобы сохранялось достигнутое в пункте 2 выдвинутое положение.
- 5. Выполните тестовый запуск согласно руководству по эксплуатации линейного привода с низкой тактовой частотой и низкой скоростью удара.
- 6. Постепенно увеличивайте скорость перемещения полезной нагрузки до тех пор, пока не будет достигнута будущая рабочая скорость.
 - Ее значение указано в расчетах для Ваших условий эксплуатации.
 - Каретка линейного привода при этом не должна сильно ударяться о модуль промежуточной позиции SLG-Z-....

- Во время тестового запуска проверьте, не требуют ли изменения следующие настройки:
 - время поворота упорного рычага внутрь (при отсутствии дросселирования упорный рычаг в среднем положении ударяется о каретку SLG-...).
 - позиция датчика положения,
 - настройка упорного рычага; контрение упорного рычага допускается только со стороны, противоположной упорному диску.

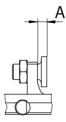


Fig. 24

Возможны следующие диапазоны регулировки:

Тип	SLG-Z-8	SLG-Z-12	SLG-Z-18
Расстояние A _{min}	2,5 мм		3,7 мм
Расстояние A _{max}	4,2 mm		5,4 MM
Момент затяжки	2,9 Н∙м		5,9 Н∙м

Fig. 25

Вносить изменения можно только тогда, когда каретка находится в состоянии покоя.

8. Завершите тестовый запуск.

6 Управление и эксплуатация

При использовании модуля промежуточной позиции с резиновым упором:

• учитывайте, что при более длительной эксплуатации позиция конечных положений меняется из-за необратимой деформации резинового упора.

При наклонной и вертикальной установке:

Используйте вариант демпфирования с помощью амортизаторов типа YSRG-....

7 Обслуживание и уход

• В случае загрязнения очистите модуль промежуточной позиции, а также другие части системы мягкой тканью.

Допустимыми средствами для очистки являются:

- мыльный раствор (макс. 60 °С);
- все средства, которые не разрушают соответствующие материалы.

8 Демонтаж и ремонт

Для демонтажа:

• Сбросьте сжатый воздух из установки и устройства.

При необходимости:

• Отправьте SLG-Z-... в наш ремонтный отдел.

9 Принадлежности

Пояснение	Тип
Бесконтактный датчик положения	SME-10/SMT-10
Центрирующий штифт	ZBS
Соединительный штуцер	QSLM-M3 LCN-M3-PK (для ограниченного монтажного пространства)
Амортизатор	YSRG
Клапан плавного пуска	HEL

Fig. 26

10 Устранение неполадок

Неполадка	Возможная причина	Способ устранения	
Жесткий удар в конечном положении	Амортизатор неисправен	Замените амортизатор	
	Упорный элемент перегружен	Снизьте скорость удара	
Громкий удар в начале хода	Резиновый упор изношен	Замените резиновый упор	
Неполадки при опросе позиций	Неправильная позиция датчика положения	Скорректируйте позицию бесконтактных датчиков положения	
	Применяется неверный тип бесконтактного датчика положения	Используйте только датчик по- ложения типа SME/SMT-10	
	Бесконтактный датчик положения неисправен	Замените бесконтактный датчик положения	
	Ферритовые детали близко к бесконтактному датчику положения	Используйте детали из неметаллических материалов	

Fig. 27

11 Технические характеристики

Тип	SLG			
	8Z	12Z	18Z	
Монтажное положение	Любое (например, на монтажной рейке типа SLG-S)			
Рабочая среда	Фильтрованный (мин. 40 мкм) сжатый воздух, содержащий или не содержащий масло			
Тип демпфирования	Гидравлическое демпфирование (при SLGZ-YSRG) Эластичное демпфирование (при SLGZ-P)			
Рабочее давление	Мин. 1 бар макс. 8 бар			
Присоединения	M3			
Макс. Энергия демпфирования/час — SLGZ-P — SLGZ-YSRG	1 800 Дж 18 000 Дж		10 800 Дж 54 000 Дж	
Макс. доп. сила упора – SLGZ-P – SLGZ-YSRG	100 H 320 H		450 H 600 H	
Макс. частота срабатывания	1 Гц			
Макс. скорость удара	1 m/c		1,5 м/с	
Время выдвижения/ втягивания *)	0,1 c		0,15 c	
Допустимый диапазон температур	- 10 °C макс. + 60 °C			
Материалы	Корпус: алюминий (ан Зубчатая рейка РОМ Шестерня: сталь Винты, вкладыш: сталь Уплотнения: PU Резиновый упор: нитрильный к		нодированный) каучук	
Bec (SLGZ)	33,5 г	33,5 г	75 г	

Fig. 28 *) При 6 бар и T = 20 °C

Передача другим лицам, а также размножение данного документа, использование и передача сведений о его содержании запрещаются без получения однозначного разрешения. Лица, нарушившие данный запрет, будут обязаны возместить ущерб. Все права в случае выдачи патента на изобретение, полезную модель или промышленный образец защищены.

Copyright: Festo AG & Co. KG Ruiter Straße 82 73734 Esslingen Германия

Phone: +49 711 347-0

Fax: +49 711 347-2144

E-mail: service_international@festo.com

Internet: www.festo.com